Asymetric Encryption 5min walk-through

2018-09-14 13_05_12-343286-PAMSX1-119.jpg - Windows Photo Viewer

Cryptography is one of the key-elements in the Blockchain world. We were already looking into the one-way encryption with hash function in the previous post. Encryption of data to be decrypted again, is equally essential and covered by symmetric and asymmetric encryption. I would not attempt to explain the mathematical  and rather complex background of cryptography, but show with some sourcecode how easy it is to integrate such powerful tools in any solution.

Essential for the asymmetric encryption is the creation of a pair of keys, a public and a private key. The public key can be shared with anyone, it is “public”, it can be used by anyone to create an encrypted message (or data) and send it to a receiver which is the only one holding the private key. This private key is the only way to decrypt the message. This provides a very secure communication mechanism. On the contrary there is Symmetric encryption which uses the same key for encryption and decryption.

Anyone who want to deep-dive into cryptography and algorithm I can refer to books and courses. Otherwise we do an express walk-through here in Java, with the shortest possible sample for key generation (5 lines of code) and encryption/decryption (8 lines of code) of text.

Using the Java core packages java.security it is boiling down to a few methods to create a key pair. You have to choose the algorithm (RSA,DSA,DiffieHellman) and initialize with the keysize. It is obviously a crucial design decision where and how to create the keys and distribute it to the right party.

import java.security.Key;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
...

private KeyPairGenerator keyGen;
private KeyPair pair;
static PrivateKey privateKey;
static PublicKey publicKey;
...

keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(512);
pair = keyGen.generateKeyPair();
privateKey = pair.getPrivate();
publicKey = pair.getPublic();

To encode and decode a text is similar simple. Take note of the binary format, we have to use Base64 to convert to String and back to binary.

	private String encryptText(String messageText, Key key) {

		Base64.Encoder encoder = Base64.getEncoder();
		try {
			cipher = Cipher.getInstance("RSA");
			cipher.init(Cipher.ENCRYPT_MODE, key);
			return encoder.encodeToString(cipher.doFinal(messageText.getBytes("UTF-8")));

		} catch (Exception e) {
			e.printStackTrace();
			return "nil";
		}
	}

	private String decryptText(String cipherText, Key key) {

		Base64.Decoder decoder = Base64.getDecoder();
		try {
			cipher = Cipher.getInstance("RSA");
			cipher.init(Cipher.DECRYPT_MODE, key);
			return new String(cipher.doFinal(decoder.decode(cipherText)), "UTF-8");

		} catch (Exception e) {
			System.out.println(">>>>>> " + e.getMessage());
			return "nil";
		}
	}

Lets run the sample application, create keys, encode and decode a text.
Take note, attempting to decode with the same key fails and the encoding/decoding works with both keys, you can encode with the public or private key and decode with the respective counterpart. Similar to hash we can see the change of 1 char (“My to MY”) changes the cipher completely.

---- KEY GENERATION ----
Algorithm: RSA
Format: PKCS#8
Private Key:
MIIBVQIB(...obfuscated....)Pk/Vp+iTx64pMSQRiXq7UbXX
Public Key:
MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBALsDbKCfo55sevpoRL/GjxtlDBFdFLGedfaemCWzh7b/K5ybZbdDrjTVhoyionyGVZuClkZnN5aSRdR6nVXeVL8CAwEAAQ==
------------------------
---- ENCRYPT WITH PUBLIC KEY----
Plain Text: My 2018 Cryptography Sample !
Cipher Text: BkwSG5zczP//7N7AgiFdAyxTvJryPeCLye9zRD1dnKExKR5nABGG3kkiogl8ryujJ+MQB1ISh1EUKSDUm6KYuw==
----------------------------------------------------------
Plain Text: MY 2018 Cryptography Sample !
Cipher Text: Zs8LHPlShaNX/ch8LfrWZrguBJT+WMahMyPQcg06+Nk98i5yd2qyEvP3LfA1QxCmPdFQEPoS7nQxvnPVxE7s0g==
----------------------------------------------------------
---- DECRYPT WITH PRIVATE KEY----
Cipher Text: Zs8LHPlShaNX/ch8LfrWZrguBJT+WMahMyPQcg06+Nk98i5yd2qyEvP3LfA1QxCmPdFQEPoS7nQxvnPVxE7s0g==
Plain Text: MY 2018 Cryptography Sample !
------------------------
---- DECRYPT WITH PUBLIC KEY----
>>>>>> Decryption error
Cipher Text: Zs8LHPlShaNX/ch8LfrWZrguBJT+WMahMyPQcg06+Nk98i5yd2qyEvP3LfA1QxCmPdFQEPoS7nQxvnPVxE7s0g==
Plain Text: nil
----------------------------------------------------------
---- ENCRYPT WITH PRIVATE KEY----
Plain Text: My 2018 Cryptography Sample !
Cipher Text: sjm/MwtAy/MwThhRVKa8lJ0ro1PTHXSK5QfRNLHnYb7X/ezSCLTRPCU7z5TZg7S5ptR2Tvkj4P1J/fk8CNY6xA==
----------------------------------------------------------
---- DECRYPT WITH PUBLIC KEY----
Cipher Text: sjm/MwtAy/MwThhRVKa8lJ0ro1PTHXSK5QfRNLHnYb7X/ezSCLTRPCU7z5TZg7S5ptR2Tvkj4P1J/fk8CNY6xA==
Plain Text: My 2018 Cryptography Sample !

The complete sample sourcecode here on github.
Stay tuned.

Disclaimer: This discussion, datamodel and sourcecode or application is for study purpose solely. It does not reflect or replicate any existing commercial product. It is also not fit for or meant for production.

Advertisements

Blockchain – Big Topic broken down to pieces Part 2 (Bag Custody Sample)

bccloud3

I will continue the exploration of the basic components of the blockchain technology started in the previous post, where I implemented a basic java class to visualize hashing and the linking of blocks (chain). To provide a sample for the aviation industry walking along the use-case of tracking the baggage custody changes during a flight journey .

3. Validation

A blockchain need to be validated otherwise we would not know if data was changed or corrupted. We have to iterate through the sequence of blocks, for this we create an array of bag transactions to allow easy iteration and compare the stored hash of each block with the recalculated hash. If the values match the blockchain is valid, if not it is corrupted (and all subsequent blocks). Ideally this would be event-driven, any change to the blockchain triggers the revalidation. In a real-world implementation changes through the endpoints would not be possible, something we will look at later when working with Corda or Ethereum.

		String currentBagBlockHash = "0";

		String myBagTag = randomBagTagID();
		String myPNR = randomPNR();

		ArrayList allBagTransactions = new ArrayList();
		BagTransaction tempBagTransaction = null;

		// Print Bag Tag (Genesis Block)
		tempBagTransaction = new BagTransaction(myBagTag, myPNR, Entity.NIL.name(), Entity.PAX.name(), 0, "0");
		currentBagBlockHash = tempBagTransaction.getHash();
		allBagTransactions.add(tempBagTransaction);

...

public void checkBlockchainIntegrity(ArrayList allBagTransactions) {
	// Check Blockchain. Compare recalculated hash with hash attribute stored

	for (BagTransaction b : allBagTransactions){
		System.out.print("Block " + b.getBlockID() + " Stored Hash: " + b.getHash() + " -- Calculated Hash:" + b.createHash());
		if (b.getHash().equals(b.createHash()))
			System.out.println(" -- OK");
		else
			System.out.println(" -- FAIL. Blockchain broken.");
	}
	System.out.println(" -- ");
}
	}

For better reading we convert each block into a JSON object.

{
  "timeStamp": "2018-08-26T09:18:09.227Z",
  "blockID": 0,
  "blockHash": "ce41abbf21a162152e30fc511eaf594db43c84948691d12ef78fad6f31fa6043",
  "previousBlockHash": "0",
  "bagTag": "5347241966",
  "pnr": "EONT9T",
  "custodyTransfer": [
    {"transferFrom": "NIL"},
    {"transferTo": "PAX"}
  ]
}
{
  "timeStamp": "2018-08-26T09:18:09.287Z",
  "blockID": 1,
  "blockHash": "6b6073122ef996acc1e3c3e74c3963b5903112800781b4ba88e96baf0a8e2e04",
  "previousBlockHash": "ce41abbf21a162152e30fc511eaf594db43c84948691d12ef78fad6f31fa6043",
  "bagTag": "5347241966",
  "pnr": "EONT9T",
  "custodyTransfer": [
    {"transferFrom": "PAX"},
    {"transferTo": "AIRP"}
  ]
}

Running the validation for a clean and corrupted blockchain

Block 0 Stored Hash: ce41abbf21a162152e30fc511eaf594db43c84948691d12ef78fad6f31fa6043 -- Calculated Hash:ce41abbf21a162152e30fc511eaf594db43c84948691d12ef78fad6f31fa6043 -- OK
Block 1 Stored Hash: 6b6073122ef996acc1e3c3e74c3963b5903112800781b4ba88e96baf0a8e2e04 -- Calculated Hash:6b6073122ef996acc1e3c3e74c3963b5903112800781b4ba88e96baf0a8e2e04 -- OK
Block 2 Stored Hash: a33bbb5ebdec589e9f1b7c7952d6fef3fae2235b5a0600b8755b07040bba8227 -- Calculated Hash:a33bbb5ebdec589e9f1b7c7952d6fef3fae2235b5a0600b8755b07040bba8227 -- OK
Block 2 Stored Hash: 464319fed3a2c49df9a1fbeedae3f3e7c6692db0f6ab97a4c983f9fdf4269e6d -- Calculated Hash:464319fed3a2c49df9a1fbeedae3f3e7c6692db0f6ab97a4c983f9fdf4269e6d -- OK
-- Now corrupt Block 1 by changing the data
Block 0 Stored Hash: ce41abbf21a162152e30fc511eaf594db43c84948691d12ef78fad6f31fa6043 -- Calculated Hash:ce41abbf21a162152e30fc511eaf594db43c84948691d12ef78fad6f31fa6043 -- OK
Block 1 Stored Hash: 6b6073122ef996acc1e3c3e74c3963b5903112800781b4ba88e96baf0a8e2e04 -- Calculated Hash:09fd4223571f079258bd69d935f99cb552cd3ac0854410b81a2313d215929ebd -- FAIL. Blockchain broken.

 

4. Mining Blocks

Now we get to the first more complex concepts of the blockchain, the mining process. We are still operating at a very basic level though with a single node, but we can introduce the mining operation. Without going into too much detail, mining blocks is the step to close/hash a block and creating a new one as part of the consensus process. The incentive to the miner community is a transaction fee given to that miner that solves a hard cryptographic problem first. The more computing power you invested in, the higher chance you have as miner to solve the problem and get the fee. Based on scarcity this consensus approach is called Proof-of-Work (recommended reading). Unfortunately this lead to the current hardware race consuming vast amount of energy for literally no purpose (you let CPU/GPU’s guess numbers basically). This is seen as limitation, together with the long transaction times, and some blockchain start to move to other concepts, such as Proof-of-Stake.

Breaking down the Proof-of-Work to a simple algorithm, we build a hash function that need to create a certain pattern before being accepted. The hash of (data current block + hash previous block + a nonce value) need to have a number of leading “0” in front. The number of “0” is the difficulty and the nonce is an integer value that is changed/increased until the hash matches the required pattern.

public String mineHash(int difficulty) {
	String returnHash = "";
	String tempHash = "";

	String target = new String(new char[difficulty]).replace('\0', '0');
	tempHash = createHash();

	while (!tempHash.substring(0, difficulty).equals(target)) {
		nonce++;
		tempHash = createHash();
	}

	return tempHash;
}

With a growing difficulty (more leading “0”) it takes obviously longer to crack the challenge and with more CPU power you can run through the guessing cycle faster. Some samples below with increasing difficulty running on an ordinary notebook i7 CPU (java executing on a single core/thread in this case).

Difficulty: 1
Attempts: 11
Milliseconds: 10

Difficulty: 2
Attempts: 393
Milliseconds: 30

Difficulty: 3
Attempts: 1.794
Milliseconds: 40

Difficulty: 4
Attempts: 115.756
Milliseconds: 230

Difficulty: 5
Attempts: 3.366.041
Milliseconds: 3.210

Difficulty: 6
Attempts: 5.322.279
Milliseconds: 4.530

Difficulty: 7
Attempts: 76.339.743
Milliseconds: 60.850

Block
{
  "timeStamp": "2018-08-26T10:38:36.734Z",
  "blockID": 0,
  "blockHash": "0000000158d606c953a5df346d459aad949e9dbb4abe74f30ecf225c23112b14",
  "previousBlockHash": "0",
  "bagTag": "7821666095",
  "pnr": "ZHY4RT",
  "custodyTransfer": [
    {"transferFrom": "NIL"},
    {"transferTo": "PAX"}
  ]
}

Have a look at the below website for the current real life difficulty for bitcoin (hashing algorithm not implemented in the simple way we did it here for illustration purpose). Looking at the current difficulty (6,727,225,469,722) you can guess what kind of hardware setup you need to be fast. I gave up beyond difficulty 7 with the algorithm above.

Bitcoin Difficulty

Stay tuned for more blockchain.

Disclaimer: This discussion, datamodel and sourcecode or application is for study purpose solely. It does not reflect or replicate any existing commercial product.

Sourcecode at github

Blockchain – Big Topic broken down to pieces

bccloud2

Blockchain is certainly not the latest buzzword any longer, it moved well forward on the Gartner Hype Cycle, passed the peak of inflated expectations and I am sure we will find it in the trough of disillusionment in the soon to be updated 2018 version. It is picked up by various industries looking for use-cases and applications. Unfortunately we are looking at Blockchain fatigue already, as there is much hype but little visible implementations outside the cryptocurrency space. I prefer projects that implement blockchain as the right tool for a particular problem over the “let’s see which business case we can throw blockchain at” approach.

In the aviation (airport) space I believe Blockchain has its appliance, but as previously stated I wont attempt to build an AODB with Blockchain as “database” for milestones just for the sake of integrating this technology. For some scenarios you certainly need immutability of data, but we can implement this with the means of other immutable data storage. It is also no point implementing a blockchain into a corporate network infrastructure with few nodes under the control of one entity, this does not fulfill the promise of distributed ledger and trust. A few use-cases that I see, usually involving multiple business parties:

  • Baggage tracking from end-to-end (goes well with IATA 753 effective since June 1st)
  • Service and contract management, billing (eg. groundhandler-airline)
  • Aircraft spare parts management (here the track of provenance have a huge impact)

Trying to understand blockchain can be overwhelming, ranging from Satoshi Nakamoto’s original whitepaper to a endless number of books, talks, websites.
One approach to understand the technology is to break it down into smaller pieces that are implementing proven existing technology or algorithms and understand how they come together eventually forming the much more complex blockchain.

I wont attempt to explain blockchain here, this is redundant, plenty of knowledgeable people have written books and articles you can refer to, but split it into some basic easy digestible portions, some coding included. Before attempting to code against real blockchain implementations, like Ethereum or Hyperledger, I will implement the most basic and simple blockchain first.

1. Hash

The most essential element of blockchain is a hash, a digital signature. A hash is a one way encryption,  once something is hashed there is no way to reverse the process and reveal the original text (decrypt it). Using the SHA (Secure Hash Algorithm), the most popular algorithm with its variants of 256, 384 and 512 bit, defined by NIST, we can convert a text (data) of any length to a 256 bit representation (for SHA256) which is represented by a 64 byte hex string. There is a number of libraries implementing the algorithm, below is the Apache DigestUtils version.

	private void testSHA(){

		String sha256hex = DigestUtils.sha256Hex("Jim Smith");
		System.out.println("\n1 SHA256: " + sha256hex);

		String sha256hex2 = DigestUtils.sha256Hex("jim smith");
		System.out.println("\n2 SHA256: " + sha256hex2);

		String sha256hex3 = DigestUtils.sha256Hex("jim smith and the lazy brown fox");
		System.out.println("\n3 SHA256: " + sha256hex3);

		String sha384hex = DigestUtils.sha384Hex("Jim Smith");
		System.out.println("\n4 SHA384: " + sha384hex);

		String sha512hex = DigestUtils.sha512Hex("Jim Smith");
		System.out.println("\n5 SHA512: " + sha512hex);
	}

resulting in

1 SHA256: 65742910cc03889474f1ee2c8f321a105603d0ae2f91070ffd95b35f8da88261
2 SHA256: bfae13266154ec3c4de5c09cf14358305e44f48d2156953723ebbb184a724499
3 SHA256: e5a4a1b8bd88eb7cf8bff9ee5dd235f87ef996262d4d0213c1387f6141ab9574
4 SHA384: c6e76ad773905c1eedb6a0bd9c0b1602a56928d1ce95d70190cd908797466b948dd342aa69dd0343251afece2e48bfc2
5 SHA512: f813c3d9deb66d4999f6839acc60eb6e2fff6a84266c02e0d4b183f5e56d9674c70b0b136f9e1388673cefbc9278f583e3a4c9803ef0c49f9af28aca60dae5ac

Important to notice:
– Change of one character in the original text produces a complete new hash.
– Independent from the length of the original text the hash has the same length.

2. Chained blocks

As the wording implies, there are blocks of information that are linked together. Sounds like a linked list, where every list entry is pointing to the next information. The chained blocks are linked differently, every block points to the hashed previous block.

For illustration I choose a typical baggage journey (simplified).

blockchain

A bag passes different key touchpoints and changes its custody a few times between the various parties during the handling. Every time there is a new milestone event we record it, eg. bag scanned by groundhandler at the chute at what time, and include the hash of the previous milestone. This way the lifecycle from bag drop at departure to bag delivery at destination is recorded in an immutable way and cannot be changed afterwards.

Pitfall: The bag journey is recorded in an immutable way, but the blockchain cannot verify or confirm the milestone actually happened. This falls into the responsibility of the overall design and service orchestration.

Let’s build a very simple application implementing the above blockchain for baggage handling.

A java class BagTransaction representing the bag attributes inclusive timestamp and the custody transfer.

package blockchaindemo;

import java.time.Instant;

import org.apache.commons.codec.digest.DigestUtils;

public class BagTransaction {

	private String bagTag;
	private String timeStamp;
	private String pnr;
	private String transferFrom;
	private String transferTo;

	private long blockID;
	private String blockHash;
	private String previousBlockHash;

	public BagTransaction(String bagTag, String pnr, String transferFrom, String transferTo, long blockID,
			String previousBlockHash) {
		super();
		this.bagTag = bagTag;
		this.timeStamp = Instant.now().toString();
		this.pnr = pnr;
		this.transferFrom = transferFrom;
		this.transferTo = transferTo;
		this.blockID = blockID;
		this.previousBlockHash = previousBlockHash;

		this.blockHash = createCurrentHash();
	}

	public String getHash() {
		return this.blockHash;
	}

	@Override
	public String toString() {
		return "BagTransaction [bagTag=" + bagTag + ", timeStamp=" + timeStamp + ", pnr=" + pnr + ", transferFrom="
				+ transferFrom + ", transferTo=" + transferTo + ", blockID=" + blockID + ", blockHash=" + blockHash
				+ ", previousBlockHash=" + previousBlockHash + "]";
	}

	private String createCurrentHash() {
		String returnHash = "";

		returnHash = DigestUtils.sha256Hex(
				this.bagTag + this.timeStamp + this.pnr + this.transferFrom + this.transferTo + this.previousBlockHash);

		return returnHash;
	}

}

Take note of the hashing method that includes all fields inclusive of the previous hash.

A java class BagDemoApp using the transaction class.

package blockchaindemo;

import java.util.Random;

public class BagDemoApp {

	public static void main(String[] args) {

		BagDemoApp demoApp = new BagDemoApp();
		demoApp.demo1();

	}

	public void demo1() {

		String myBagTag = randomBagTagID();
		String myPNR = randomPNR();

		String currentBagBlockHash = "";

		// Print Bag Tag (Genesis Block)
		BagTransaction bagTransaction1 = new BagTransaction(myBagTag, myPNR, Entity.NIL.name(), Entity.PAX.name(), 1,
				"0");
		currentBagBlockHash = bagTransaction1.getHash();

		// Bag Drop
		BagTransaction bagTransaction2 = new BagTransaction(myBagTag, myPNR, Entity.PAX.name(), Entity.AIRP.name(), 2,
				currentBagBlockHash);
		currentBagBlockHash = bagTransaction2.getHash();

		// Bag SEC Scan
		BagTransaction bagTransaction3 = new BagTransaction(myBagTag, myPNR, Entity.AIRP.name(), Entity.SEC.name(), 3,
				currentBagBlockHash);
		currentBagBlockHash = bagTransaction3.getHash();

		// Display Transactions
		System.out.println(bagTransaction1);
		System.out.println(bagTransaction2);
		System.out.println(bagTransaction3);

	}

	// HELPER METHODS --------------------------------------------

	public String randomPNR() {
		final String alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
		final int N = alphabet.length();

		Random r = new Random();
		StringBuffer tempPNR = new StringBuffer();

		for (int i = 0; i < 6; i++) {
			char nxtChar = alphabet.charAt(r.nextInt(N));
			while ((i == 0) && (Character.isDigit(nxtChar)))
				nxtChar = alphabet.charAt(r.nextInt(N));
			tempPNR.append(nxtChar);
		}
		return tempPNR.toString();
	}

	public String randomBagTagID() {
		String tempBagTag = "";

		long range = 9999999999L;
		Random r = new Random();
		long number = (long) (r.nextDouble() * range);

		tempBagTag = String.format("%010d", number);
		return tempBagTag;
	}

	public enum Entity {

		PAX {
			@Override
			public String toString() {
				return "Passenger";
			}
		},
		GH {
			@Override
			public String toString() {
				return "Groundhandler";
			}
		},
		AIRL {
			@Override
			public String toString() {
				return "Airline";
			}
		},
		AIRP {
			@Override
			public String toString() {
				return "Airport";
			}
		},
		SEC {
			@Override
			public String toString() {
				return "Security";
			}
		},
		NIL {
			@Override
			public String toString() {
				return "nil";
			}
		}

	}

}

Executing the application

BagTransaction [bagTag=1691462171, timeStamp=2018-08-12T08:02:25.745Z, pnr=ICSEAH, transferFrom=NIL, transferTo=PAX, blockID=1, blockHash=3ff736f7158d224db6e2e8ba25f3d50321903cd911646576f442a60f8c5872ed, previousBlockHash=0]
BagTransaction [bagTag=1691462171, timeStamp=2018-08-12T08:02:25.808Z, pnr=ICSEAH, transferFrom=PAX, transferTo=AIRP, blockID=2, blockHash=88dd4a2be3bc90ebce71635bedd6bcb63b326044e4bd49634a859a86458de243, previousBlockHash=3ff736f7158d224db6e2e8ba25f3d50321903cd911646576f442a60f8c5872ed]
BagTransaction [bagTag=1691462171, timeStamp=2018-08-12T08:02:25.808Z, pnr=ICSEAH, transferFrom=AIRP, transferTo=SEC, blockID=3, blockHash=ea7767ddb2dd7c2bfed4d3a038b9249e43df15a0396ff71da717783db9fee3c4, previousBlockHash=88dd4a2be3bc90ebce71635bedd6bcb63b326044e4bd49634a859a86458de243]

Please note, this is the most simple implementation of a blockchain for illustration purpose, it still misses a lot of features to pass to production, eg. mining, proof-of-work, etc.

In a second part might spin this a bit further. Stay tuned.

 

Disclaimer: This discussion, datamodel and sourcecode or application is for study purpose solely. It does not reflect or replicate any existing commercial product.